BEKAERT

Steel Cord

Definition

Cord components

FILAMENT OR WIRE (1)

A metal fibre used as an individual element in a strand or cord. Standard filament diameters are

0.15/0.175/0.20/0.22/0.25/0.27/0.28/0.30/0.35 and 0.38 mm.

A group of filaments combined together to form a unit product for further processing.

CORD (3)

A formed structure composed of two or more filaments when used as an end product, or a combination of strands or filaments and strands.

WRAP (4)

A filament wound helically around a steel cord.

Physical properties

DIAMETER OF CORD

The diameter is determined by calculating the arithmetic average of the measured maximum and minimum thickness of the cord. The diameter is expressed in millimetres.

LENGTH OF LAY (1)

The axial distance required to make a 360 degree revolution of any element in a strand or in a cord and expressed in millimetres. The recommended lengths of lay are based on the ISO recommendation R-388-R20 series, ranging from 2.50 mm to 25.00 mm.

DIRECTION OF LAY(2)

The helical disposition of the components of

better together

a strand or cord. The strand or cord has an 'S' or left-hand lay if, when held vertically, the spirals around the central axis of the strand or cord conform in direction of slope to the central portion of the letter 'S'; and 'Z' or right-hand lay if the spirals conform in direction of slope to the central portion of the letter 'Z'.

LINEAR DENSITY

The mass per unit length expressed in grams per metre.

ARC HEIGHT(1)

The amount of bending of a cord sample lying on a flat surface against two supports with an interdistance of 300 mm.

RESIDUAL TORSIONS

The number of revolutions made by a specific length of cord when one end is held in a fixed position and the other allowed to turn freely, expressed in turns per 6 metres.

FLARE(2)

The spreading of the filament ends or the strand ends at the cut end of a cord, expressed as the unravelled length in millimetres.

Mechanical properties

BREAKING FORCE

The maximum force or load expressed in Newtons, which a test specimen can support during a tensile test of loading to break.

TENSILE STRENGTH

The breaking load of a filament per unit of unstrained cross-sectional area expressed in Newtons per square millimetre or Megapascals.

ELONGATION AT BREAK (or breaking elongation)

The increase in length of a test specimen, which results from subjecting it to the breaking force in a tensile test, expressed as a percentage of the initial length of the specimen measured under a defined pre-tension.

ELONGATION BETWEEN DEFINED FORCES (EDF)(1)

The increase in length of a test specimen, which results from subjecting it to a defined force from a defined pre-tension onward. The elongation is expressed as a percentage of the initial length of the specimen.

ELASTICITY

The property of a material by virtue of which it tends to

recover its original size and shape after removal of a deforming force.

Chemical properties

MASS OF COATING

The quantity of the covering layer applied to the surface of the wire, expressed in grams per kilogram of coated wire.

THICKNESS OF COATING

The average thickness of the coating layer expressed in micrometers.

COMPOSITION OF COATING

The quantity of each of the components expressed as a percentage of the total mass of the coating. Adhesion properties

ADHESION STRENGTH

The force required to separate a steel tyre cord from the rubber compound.

The force is expressed in Newton.

